Q.	•	C 0	ue:	20	E	UU	402	
----	---	-----	-----	----	---	----	-----	--

Reg. No:			
			1

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(A)	UTON	IOMO	US)
(0.01	.01110	$\mathcal{O}\mathcal{O}$

B.Tech I Year II Semester Regular Examinations November-2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

4M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a Define cutin voltage of a PN Junction diode and giv	its values for Si and Ge diodes. L1 4M
---	---	--

- b When a reverse bias is applied to a germanium PN junction diode, the reverse L5 4M saturation current at room temperature is 0.3μ A. Determine the current flowing in the diode when 0.15V forward bias is applied at room temperature.
- c Mention the importance of Diode Clipper and list its applications. L2

OR

- a Analyze the current components in a PN diode and determine the expression for L4 6M diode current equation.
 - b Draw and explain the V-I characteristics of Zener diode. Show that the Zener diode L1 6M can act as a voltage regulator with a neat diagram.

UNIT-II

- 3 a Draw the circuit diagram of a Half wave rectifier and explain its operation with the L1 6M help of waveforms.
 - b Determine the expressions for Average DC current, Average DC Voltage, RMS L5 6M
 Value of Current, DC Power Output and AC Power input of a Full Wave Rectifier.

OR

- 4 a A 5KΩ load is fed from a bridge rectifier connected across a transformer secondary L5 4M whose primary is connected to 460V, 50 Hz supply. The ratio of number of primary turns to secondary turns is 2:1.Estimate dc load current, ripple voltage and PIV rating of diode.
 - b Demonstrate the working principle of LC filter with neat diagram and derive the L2 8M expression for its ripple factor.

UNIT-III

- a Explain the current components of PNP transistor, the Emitter Efficiency, Base L2 6M Transportation Factor and Large signal current gain.
 - **b** Evaluate the relation between α , β and Υ of a Transistor. **L5** 6M

OR

- 6 a With the help of neat diagram, explain the operation and characteristics of n-channel L2 6M
 Enhancement type MOSFET.
 - **b** Compare the performance of BJT with FET.

L2 6M

Q.P. Code: 20EC0402

JIL V. ANN U

UNIT-IV

- 7 a Explain the concept of DC and AC Load lines and discuss the criteria for fixing the L2 6M Q-point.
 - b Design the circuit ,for given Q-point values are to be ICQ=1mA and VCEQ=6V
 L4 6M
 Assume that VCC=10V, β=100 and VBE=(on)=0.7V

OR

- 8 a List the different types of Biasing a Transistor and explain the Fixed Bias of a L4 6M Transistor.
 - **b** Design a collector to base bias circuit for the specified conditions: Vcc =15V, VCE **L6** 6M = 5V, IC = 5mA and β = 100.

UNIT-V

- 9 aWhy hybrid model is used for the analysis of BJT amplifier at low frequencies?L3 6MDraw the hybrid model for CE transistor and derive the hybrid parameters.L3 6M
 - **b** For a CB transistor amplifier driven by a voltage source of internal resistance Rs = **L5** 6M 1200 Ω , the load Impedance of RL = 1000 Ω . The h parameters are hib = 22 Ω , hrb = 3 x 10-4, hfb = 0.98, hob = 0.5 μ A/V. Find current gain, voltage gain, input impedance and output impedance using exact analysis and approximate analysis.

OR

- a Using low frequency h-parameter model, Evaluate the expressions for voltage gain, L5 6M current gain, input impedance and output admittance for a BJT Amplifier in CE configuration.
 - **b** A CE amplifier is driven by a voltage source of internal resistance Rs =1000 Ω and L5 6M the load impedance of RC=2k Ω . The h-parameters are hie=1.3k, hfe=55, hoe = 22 μ A/V and hre = 2 x10-4. Neglecting biasing resistors, Estimate the value of current gain, voltage gain, input impedance, output impedance for the value of Emitter Resistor RE =200 Ω inserted in the emitter circuit.

*** END ***